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Semi-Lagrangian semi-implicit time-splitting scheme
for the shallow water equations
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SUMMARY

Time-splitting technique applied in the context of the semi-Lagrangian semi-implicit method allows the
use of extended time steps mainly based on physical considerations and reduces the number of numerical
operations at each time step such that it is approximately proportional to the number of the points of spatial
grid. To control time growth of the additional truncation errors, the standard stabilizing correction method
is modified with no penalty for accuracy and efficiency of the algorithm. A linear analysis shows that
constructed scheme is stable for time steps up to 2h. Numerical integrations with actual atmospheric fields
of pressure and wind confirm computational efficiency, extended stability and accuracy of the proposed
scheme. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The shallow water (SW) equations are frequently used for modelling the hydrodynamics of coastal
oceans, lakes and estuaries, simulation of flows in channels and rivers, study of large-scale waves
and height-averaged regimes in the atmosphere and ocean and so on. During the initial years of the
numerical weather prediction (in the 1950s–1960s) they were successfully used for forecasting the
middle troposphere dynamics and later (in the 1960s–1970s) for the study of general circulation
of atmosphere.

However, in our view, it is most important that these equations keep essential properties of
more complete 3D systems (Navier–Stokes, Euler and hydrostatic equations). First, they contain
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both nonlinear gravity and advective terms, imposing hard computational penalty on fully implicit
methods. Second, linearized form of these equations supports secondary fast waves and principal
slow waves, giving rise to problems associated with stiff equations. Also, the SW equations
maintain the mathematical type of more complex systems: the inviscid form of the SW equations
is of hyperbolic type (just like 3D Euler equations), inclusion of viscosity in the momentum
equations leads to incompletely parabolic system (such as 3D Navier–Stokes equations) and a
set of the linearized SW equations with different mean heights is equivalent to linearized 3D
hydrostatic equations used as the primitive system in the majority of the models of geophysical
fluid dynamics. Besides, such characteristics as the presence of a set of equations and variety of
unknown functions allow to check important characteristics of numerical schemes on different
space and time grids. All these properties make SW equations an important testing system for
computational fluid dynamics, especially for atmosphere and ocean modelling. Indeed, it has
become customary, in developing new numerical methods for weather prediction or oceanography,
to study first the SW equations.

In the last two decades, the semi-implicit semi-Lagrangian method became one of the most
efficient and popular techniques for numerical solution of the differential equations of atmosphere
dynamics. It allows to overcome the Courant–Friedrichs–Lewy (CFL) condition with respect to
both gravity and inertial waves at the low cost of solving a set of trajectory equations and linear
elliptic problems at each time step. In semi-Lagrangian methods, the CFL condition is usually
substituted by the Pudykiewicz–Benoit–Staniforth condition, which guarantees the convergence of
iterations for trajectory equations and is a rather weak restriction: the maximum allowable time
step is inversely proportional to the modulus of wind gradient, which allows to choose time steps
on the base of accuracy considerations [1, 2]. Semi-Lagrangian semi-implicit methods are currently
used in the majority of research and operational atmospheric models [3–10], and have started to
be considered for oceanographic simulations [11–13].

To circumvent the remaining computationally expensive problem of solution of elliptic equations,
different time-splitting techniques have been applied in the context of the atmospheric models
[14–18]. Splitting methods allow decoupling of multidimensional elliptic equations into a set of
1D problems, which are solved very efficiently by direct Thomas algorithm. Unfortunately, to
the best of our knowledge, all reports on application of the splitting techniques in atmospheric
models indicate the fast growth of the splitting truncation error when the time step exceeds the CFL
advection criterion [14, 16–18]. To reduce the splitting errors, Douglas et al. have recently proposed
small modifications to the splitting method in the case of parabolic equations [19, 20]. In this study,
we apply the last technique to the semi-Lagrangian semi-implicit stabilizing correction (SC) scheme
for the SW equations, analyse stability and accuracy properties of the obtained scheme, describe
respective computational algorithm and present the results of numerical tests. Let us note that
although directional splitting methods require the use of the rectangular computational domains,
it is not any critical restriction for atmospheric problems, because the majority of atmospheric
models are designed on rectangular domains. Of course, it can be an essential restriction for
some oceanographic problems related to physical domains with curvilinear boundaries. However,
consideration of this matter is out of scope of our study.

The outline of the paper is as follows. In Section 2, we describe the design of a single time step
of the semi-Lagrangian semi-implicit SC scheme applied to the SW equations. In Section 3, we
analyse the accuracy and stability properties of the algorithm, in particular, splitting technique and
its modification. The results of numerical experiments with actual atmospheric data are presented
in Section 4.
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2. DESIGN OF ONE TIME STEP OF THE NUMERICAL ALGORITHM

2.1. Primitive equations and spatial discretization

In the rotated reference system, 2D inviscid SW equations can be written in the form [21, 22]

�tW= (Ax + Gx ) �xW + (
Ay + Gy

)
�yW + CW (1)

where x, y are the Cartesian spatial coordinates, t is the time coordinate,W= (u, v,�)T is unknown
vector function whose entries are the velocity components u and v, and the geopotential � = gz
with gravitational acceleration g and height z, f = 2� sin� is the Coriolis parameter, � is the
modulus of angular velocity of the Earth’s rotation. The matrices

Ax =

⎛
⎜⎜⎝
u 0 0

0 u 0

0 0 u

⎞
⎟⎟⎠ , Ay =

⎛
⎜⎜⎝

v 0 0

0 v 0

0 0 v

⎞
⎟⎟⎠ , Gx =

⎛
⎜⎜⎝

0 0 1

0 0 0

� 0 0

⎞
⎟⎟⎠

Gy =

⎛
⎜⎜⎝
0 0 0

0 0 1

0 � 0

⎞
⎟⎟⎠ , C=

⎛
⎜⎜⎝
0 − f 0

f 0 0

0 0 0

⎞
⎟⎟⎠

represent contribution of advection, gravitational and Coriolis forces.
We use the spatial staggered uniform grid E with mesh size h (see Figure 1), which assures

better dispersion relations than grid A and allows to avoid excessive interpolations inherent in grid
C [23–25]. The points allocated for velocity components have subscript V and the geopotential
points are marked by �.

Figure 1. The staggered E grid.
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All spatial operators are approximated with the second order of accuracy. In particular, the fol-
lowing central differences are used for respective derivatives at the points Vi, j+1/2 and�i+1/2, j+1/2:

�xV� = �i+1/2, j+1/2 − �i−1/2, j+1/2

h
, �yV�= �i, j+1 − �i, j

h

�x�u = ui+1, j+1/2 − ui, j+1/2

h
, �y�v = vi+1/2, j+1 − vi+1/2, j

h

In time we use fixed time step � defined on the base of accuracy and stability considerations.
Considering that all unknown functions are found for time levels t0, . . . , tn(t j = j�), we describe
in this section the algorithm of computation of unknowns at time level tn + 1.

2.2. Solution of the advective part

At the first stage the advective part of equations

�tW=Ax�xW + Ay�yW (2)

is solved by using the method of characteristics. Each of Equations (2) can be written as

�t�= u�x� + v�y�, �= u, v,�

representing passive or self-induced advection. Therefore, characteristics equations for all three
equations in (2) have the form

dtX=V(t,X), X= (x, y), V= (u, v)

The last equations are approximated in time with the second-order accuracy

Xn+1 − Xn

�
=Vn+1/2

(
Xn+1 + Xn

2

)
(3)

where the velocity components are extrapolated to the intermediate time level with the second
order of accuracy

Vn+1/2 = 1
2 (3V

n − Vn−1) (4)

or the third order of accuracy

Vn+1/2 = 1
8 (15V

n − 10Vn−1 + 3Vn−2) (5)

Additional ‘initial’ conditions for (3) are the final positions of trajectories on the time interval
[tn, tn+1].

Considered on the E grid, Equations (3) are completed by the final positions (the arrival points)
assigned to grid points

Xn+1 =XV i, j+1/2

and solved for the initial positions (the departure points) related to V -points. The velocity compo-
nents at the middle points used in (3) are calculated by bi-linear interpolation. The initial positions
for �-points are found by bi-linear interpolation using four closest V -points.
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This algorithm was studied and applied by different authors employing semi-Lagrangian
approach. It assures the second order of accuracy, and a sufficient condition for convergence
of the fixed point iterations has the form

�� 1

max(|�xu|, |�yu|, |�xv|, |�yv|) (6)

[5, 8, 1, 26, 2, 27]. Substituting characteristic values of the velocity fields at the middle troposphere
in (6), one can find that the maximum allowable time step is about 110 min.

2.3. Gravity wave solution

Now we treat the gravity and Coriolis terms

�tW=Gx�xW + Gy�yW + CW (7)

According to semi-Lagrangian approach, these terms are approximated along the trajectories found
at the advective stage. We apply SC scheme with additional terms, which help to control the values
of the splitting errors:

un+1,1 − un

�
= f vn − �xV�n

−�

[
� f 2

4
(un − un−1) + � f

4
�yV (�n − �n−1) − ��0

4
�xV �y�(vn − vn−1)

]

vn+1,1 − vn

�
= − f un − �yV�n,

�n+1,1 − �n

�
= − �n(�x�u

n + �y�vn) (8)

un+1,2 − un+1,1

�
= f

vn+1,2 − vn

2
− �xV

�n+1,2 − �n

2
,

vn+1,2 − vn+1,1

�
= 0

�n+1,2 − �n+1,1

�
= −�0�x�

un+1,2 − un

2

(9)

un+1 − un+1,2

�
= 0,

vn+1 − vn+1,2

�
= − f

un+1 − un

2
− �yV

�n+1 − �n

2

�n+1 − �n+1,2

�
= −�0�y�

vn+1 − vn

2

(10)

Here, �n−1,�n and �n+1, �= u, v, � denote the principal values of unknown functions at the
‘past’ tn−1, ‘current’ tn and ‘future’ tn+1 time levels, respectively, and �n+1,1 and �n+1,2 denote
the intermediate (temporary) values, assigned to the arrival points at the time level tn+1. The
constant �0 in the third equations of (9) and (10) is the mean value of the geopotential. The values
at each departure point are found by bi-cubic interpolation with the stencil whose centre point is
the closest to the departure one.
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Additional terms appear in the first equation and are enclosed in brackets with coefficient � in
order to clarify their influence on the accuracy and stability in the following analysis. Such kind
of modification of SC method was proposed and analysed by Douglas and Kim [19] and Douglas
et al. [20] for solution of one parabolic equation. We extend their method to the case of hyperbolic
system and apply it in the semi-Lagrangian scheme.

Evidently, Equations (8) represent explicit, weakly unstable step (without additional terms, this
is the Euler forward scheme considered along trajectories). Stability is recovered by applying two
corrections (9) and (10) in x- and y-direction, respectively. Solution of the explicit step equations
does not require any discussion. Equations (9) are reduced to 1D difference elliptic equation

�n+1,2 − �2

4
�0�x��xV�n+1,2 = F

F = �n+1,1 − �

2
�0�x�

[
un+1,1 − un + � f

2
(vn+1,1 − vn) + �

2
�xV�n

] (11)

The second-order differences are calculated by

�x��xV�n+1,2 = (�i+1, j − 2�i, j + �i−1, j )
n+1,2

h2

for j th row and

�x��xV�n+1,2 = (�i+3/2, j+1/2 − 2�i+1/2, j+1/2 + �i−1/2, j+1/2)
n+1,2

h2

for j+1/2th row (see Figure 1). For each fixed value of y j , Equations (11) completed with boundary
conditions represent closed tridiagonal linear system, which is solved by applying efficient Thomas
algorithm [22]. Stability of this algorithm is guaranteed by diagonal dominance of the system
matrix. After finding �n+1,2, the values of un+1,2 and vn+1,2 are calculated by explicit formulas
in (9). System (10) is solved by exactly analogous method.

It is easy to show that the required boundary conditions for intermediate values can be defined
with the second-order accuracy in the following simple form:

un+1,1 = un+1,2 = un+1, vn+1,1 = vn+1,2 = vn+1, �n+1,1 = �n+1,2 = �n+1 (12)

on the set of boundary grid points. The formulation of the second-order accuracy and stable
boundary conditions for elliptic equations (11) and their counterparts deduced for system (10)
is slightly more sophisticated and should follow the discretized systems (9) and (10) rather than
their differential prototypes. For example, considering system (9) for j th row (see Figure 1)
with the boundary values �n+1,2

1, j , un+1,2
3/2, j , �n+1,2

I, j , un+1,2
I+1/2, j specified by formulas (12), we obtain

Equations (11) for indices i = 2, . . . , I −1. These equations should be completed by two boundary
conditions, first of which has the simple form

�n+1,2
I, j = �n+1

I, j

but the second is deduced from equations in (9) considered for i = 2 and boundary condition
un+1,2
3/2, j = un+1

3/2, j resulting in a more complex relation in the form

�n+1,2
2, j − �2

4
�0

�n+1,2
3, j − �n+1,2

2, j

h2
= F2, j
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F2, j = �n+1,1
2, j − �

2
�0

[
un+1,1
5/2, j −un+1

3/2, j

h
−un5/2, j−un3/2, j

h
+� f

2

v
n+1,1
5/2, j −vn5/2, j

h
+ �

2

�n
3, j−�n

2, j

h2

]

The use of more simple second boundary condition �n+1,2
I, j = �n+1

I, j , which seems to be natural at
glance, leads to unstable scheme. Analogous boundary conditions are used for Equation (11) at
j + 1/2th row and for elliptic equation obtained from (10).
Thus, one time step consists of solution for trajectory equations (3)–(5) followed by algorithm

(8)–(10) for adjustment part, which in its turn is separated in three substeps, the first of which is
solved by explicit formulas (8) and the two last are reduced to solution of 1D difference elliptic
equations with appropriate boundary conditions.

3. ANALYSIS OF ACCURACY AND STABILITY

Applying some algebra we can eliminate the intermediate values from (8)–(10) and obtain the
following equations for the principal unknown functions:

un+1 − un

�
= f

vn+1 + vn

2
− �xV

�n+1 + �n

2

+
[
� f 2

4
(un+1 − un) + � f

4
�yV (�n+1 − �n) − ��0

4
�xV �y�(vn+1 − vn)

]

− �

[
� f 2

4
(un−un−1)+� f

4
�yV (�n−�n−1)−��0

4
�xV �y�(vn−vn−1)

]
(13)

vn+1 − vn

�
= − f

un+1 + un

2
− �yV

�n+1 + �n

2
(14)

�n+1 − �n

�
= − �0

(
�x�

un+1 + un

2
+ �y�

vn+1 + vn

2

)
− (�n − �0)(�x�u

n + �y�vn) (15)

Omitting the bracket terms in the first equation and substituting � for �0 in the third equation,
we obtain the second-order accuracy absolutely stable Crank–Nicholson scheme. The terms in the
first bracket appear due to applied splitting technique, the second bracket contains additional terms
of the Douglas modification and the last term in the third equation is the result of computation of
corrections in (9) and (10) with constant divergence coefficient. Let us evaluate the influence of
each of these terms on accuracy and stability of the scheme.

Evidently, Equation (13) is the second-order approximation to the first equation in (1) for
arbitrary value of parameter �, (14) is the second-order approximation to the second equation in
(1), and (15) is the second-order approximation to the third equation linearized about �= �0.
Therefore, (13)–(15) is the second-order approximation to (1), except for divergence term in the
third equation, which is theoretically approximated with the first order of accuracy. However, if
deviations from the mean geopotential �0 are small, one can expect that the errors introduced by
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this linearization are small too. Indeed, the third equation in (1) can be rewritten in the equivalent
form

�t ln� + u�x ln� + v�y ln� = − (�xu + �yv)

Using corresponding approximations of this equations in (8)–(10)

ln�n+1,1 − ln�n

�
= − (�x�u

n + �y�vn),
ln�n+1,2 − ln�n+1,1

�
= − �x�

un+1,2 − un

2

ln�n+1 − ln�n+1,2

�
= − �y�

vn+1 − vn

2

we can achieve the second order of accuracy for all system (1). However, there is a price for
this theoretical improvement: elliptic equations for corrections become nonlinear. For example,
equation for �n+1,2 assumes the form

ln�n+1,2 − �2

4
�x��xV�n+1,2 =G

G = ln�n+1,1 − �

2
�x�

[
un+1,1 − un + � f

2
(vn+1,1 − vn) + �

2
�xV�n

]

There is no problem in solving the last elliptic equation by iterative method such as Gauss–Seidel
or successive overrelaxation (SOR), but the nonlinearity eliminates the possibility of applying more
efficient direct Thomas algorithm. On the other hand, the numerical solution provided by the ‘loga-
rithmic’ version of the scheme is virtually identical to the solution of scheme (8)–(10) as applied to
forecasting the pressure level of the middle troposphere with the characteristic value �0 ≈ 5500m
and deviations about 5% of the mean value. Thus, since the linearized versions of the third equa-
tion in (9)–(10) admit more efficient numerical solution of elliptic problem, we have chosen these
approximations.

Coefficient � in (8) is chosen to equal 1 in order to reduce the splitting errors. Indeed, in this
case, the terms in two brackets form the approximations to the second-order time derivative

�n+1 − 2�n + �n−1, �= u, v,�

and consequently all bracket terms give an additional error of the third order. Since the second-
time derivatives are sufficiently small in atmospheric motions of the large scale, the Douglas
modification allows to reduce the negative effect of the splitting on overall accuracy for great
time steps. The price for this improvement of approximation is very modest: one should cal-
culate additional three terms in explicit form, which takes about 5% of the computational
time of the traditional splitting scheme without � terms. Thus, we can conclude that the
proposed scheme is practically of the second order of accuracy with the splitting errors of the
third order.

Let us turn our attention to the analysis of stability of scheme (8)–(10). The advective part
is solved by traditional algorithm and its stability criterion is given by (6). Let us investigate
the linear stability of the adjustment step. Considering the primitive equations linearized about a
state of the rest on an f -plane, we obtain (13)–(15) with zero trajectories (all values are defined
at the grid points), f = f0 in the first and second equations, and �= �0 in the third equation,
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that is,

un+1 − un

�
= f0

vn+1 + vn

2
− �xV

�n+1 + �n

2

+
[

� f 20
4

(un+1 − un) + � f0
4

�yV (�n+1 − �n) − ��0

4
�xV �y�(vn+1 − vn)

]

− �

[
� f 20
4

(un−un−1)+� f0
4

�yV (�n−�n−1)−��0

4
�xV �y�(vn−vn−1)

]
(16)

vn+1 − vn

�
= − f0

un+1 + un

2
− �yV

�n+1 + �n

2
(17)

�n+1 − �n

�
= − �0

(
�x�

un+1 + un

2
+ �y�

vn+1 + vn

2

)
(18)

Applying von Neumann spectral analysis, that is, substituting the representation of the difference
solution in the form of a separate discrete wave in (16)–(18), we obtain the following characteristic
equation:

(�−1)P(�) = 0, P(�) = �(�−1)2+A�(�+1)2−B(�−1)2(�−�)+C(�+1)2(�−�) (19)

A= �2�0

h2

(
sin2

kh

2
+ sin2

mh

2

)
+ �2 f 20

4
, B = �2 f 20

4
, C = �4�2

0

h4
sin2

kh

2
sin2

mh

2

where � is the amplification factor of the scheme and k and m are the wave numbers.
For the scheme to be stable, all the amplification factors should lie within the unit circle or on

its boundary (in the last case, the amplification factor should be a simple root of characteristic
equation). Evidently, � = 1 is the stable root and the others are defined from third-order polynomial
equation P(�) = 0. In the case � = 0 (non-modified splitting), � = 0 is one more root (�n−1 terms
disappear from Equation (16)) and the remaining roots satisfy equation

(1 − B)(� − 1)2 + (A + C)(� + 1)2 = 0

These roots are stable iff ∣∣∣∣ A + C − (1 − B)

A + C + (1 − B)

∣∣∣∣ �1

that is,

�2 f 20 �4

If � �= 0 the situation is more complex. To analyse the location of the roots in this case, we use
one-to-one mapping

z = � + 1

� − 1
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from the unit circle onto the left half-plane of the extended complex plane. This way, equation
P(�) = 0 is transformed to

P(z) = Ãz3 + B̃z2 + C̃z + D̃ = (z + 1) + Az2(z + 1) − B + 2Cz2 = 0 (20)

According to the Lienard–Chipart criterion, the polynomial P(z) has roots in the left half-plane
iff all the coefficients Ã, B̃, C̃, D̃ are positive and the determinant �= B̃C̃ − ÃD̃ is positive too
[28]. We confine analysis of (20) to the most important case � ∈ (0, 1]. Then, elementary algebra
shows that the above conditions are satisfied iff

�2 f 20 (1 + �)�4 (21)

For the maximum value | f |max = 1.4×10−4 s−1 and � = 1 (modified splitting) we get � ≈ 160min,
which is a very weak restriction. For example, in atmosphere and ocean modelling a greater time
step is hard to be used.

4. NUMERICAL EXPERIMENTS

In order to evaluate the accuracy and efficiency of the method described in Section 2, we ran a
series of numerical experiments over a square domain of side 5000 km centred at Porto Alegre
city (30◦S, 52◦W), using oblique stereographic projection for representation of the Earth surface.
This domain was covered by staggered E grid with mesh size h = 50km. The initial and boundary
value conditions for geopotential height and wind components on the 500 hPa pressure surface
were obtained from the objective analysis and global forecasts of the National Centers for
Environmental Prediction (NCEP). In principle, a two-time-level scheme does not require spe-
cial first step needed for three-time-level methods. However, special treatment should be given
for the extrapolation formulas of wind (4) at the first advective step and for formulas (5) at the
first and second steps. We assume u1/2 = u0, v1/2 = v0 in (4), (5) at the first time step and use (4)
instead of (5) at the second time step.

A number of 24-h forecasts of the geopotential and wind fields were calculated using proposed
modified splitting scheme (�= 1) with trajectories evaluated by formulas (3), (4) (MSL1) and (3),
(5) (MSL2). Also non-modified version of the splitting algorithm (�= 0) with trajectories (3), (4)
(SL1) and (3), (5) (SL2) and the Eulerian forward–backward (FB) scheme were run. The ‘control’
forecast by the FB scheme was run with the small time step � = 2 min corresponding to the CFL
stability condition. In order to investigate the growth of the time truncation error as a function of
the time step length, two semi-Lagrangian splitting schemes were run with different time steps.
The accuracy of each integration was measured by comparing the forecasts with the corresponding
‘control’ results. The root-mean-square (RMS) differences between height forecasts are shown in
Table I, where � is the time step of integrations (in minutes), the shown numbers are RMS height
differences between 24-h forecasts of chosen scheme and FB scheme (in metres), and T�=60 is the
central processing unit (CPU) time of one forecast with � = 60 min (in fractions of FB forecast
time). The modified technique improves essentially the accuracy of the forecasts for time steps
greater than 30 min. Taking into account that the computational cost of one forecast using SC
scheme is proportional to �−1, we can conclude that the MSL1 and MSL2 schemes are certainly
more efficient than SL1 and SL2. Although reducing of the splitting error is not sufficient for the
largest time steps, the scheme remains stable up to � = 120 min.
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Table I. RMS differences between tested (MSL1, MSL2, SL1, SL2, USL1 and USL2)
schemes and reference (FB) scheme.

Scheme �= 10 �= 30 �= 60 �= 90 T�=60

MSL1 2.1 2.6 4.2 19.8 0.18
MSL2 2.0 2.5 3.9 18.3 0.18
SL1 2.2 3.8 26.4 67.5 0.17
SL2 2.1 3.6 25.7 66.1 0.17
USL1 2.0 2.5 3.7 6.8 0.24
USL2 2.0 2.5 3.7 6.8 0.32
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Figure 2. RMS errors of 24-h forecasts for three tested schemes: height field.

To provide a comparison of the performance between developed scheme and standard unsplit
semi-implicit semi-Lagrangian scheme, we performed some experiments with unsplit version of
the scheme. The last scheme is based on the same spatial discretization outlined in Section 2.1 and
includes the same trajectory calculation algorithm described in Section 2.2. The adjustment step
consists of implicit Crank–Nicholson approximation of (7) along the trajectories of particles. The
details of approximation can be found in [27] with the only difference related to the Coriolis term. It
was found to be suitable to present the Coriolis parameter as a sum of its mean value and deviations,
and approximate the former term implicitly in Crank–Nicholson form and the latter term explicitly.
This kind of approximation allows to simplify the elliptic equation for the implicit terms to the form
of constant coefficient Helmholtz equation, and still keeps the same stability and accuracy as fully
implicit approximation [29, 30]. The obtained 2D Helmholtz equation for the geopotential height
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Figure 3. RMS errors of 24-h forecasts for three tested schemes: wind field.

can be solved by traditional SOR method or more efficient multigrid solvers, which have reliable
implementations for this kind of problems. We applied the free available BOXMG solver, which
allows the use of the rectangular grids with arbitrary number of the grid points [31, 32]. Through
numerical experiments the most efficient versions of the point SOR method and BOXMG method
were selected. For the SOR algorithm, the red–black ordering appeared to be about 1.5 times faster
than lexicographic one. The optimal parameters of the BOXMG solver were defined as follows: the
V -type cycle with application of two cycles, one four-colour Gauss–Seidel point relaxation sweep
on any grid (except for the finest one) both before dropping down to the next coarser grid and
before interpolation to the previous finer grid, two red–black point relaxation sweeps on the finest
grid. The geopotential height of the current time level was used as initial guess for both methods.
Under the above configurations, the BOXMG was about two times faster than SOR. In order to
be sure that applied MG algorithm is sufficiently optimal, we compared it with the classic Brandt
algorithm [33], which is designed especially for Poisson and Helmholtz problems with constant
coefficients. The computational results for both MG algorithms are virtually identical on the spatial
grid of 97×97 points (which is needed for double coarsening algorithm by Brandt in order to reach
rather coarse grids) that leads us to believe that selected set of parameters for the BOXMG solver
is rather optimal. The main advantage of the BOXMG solver in the context of our model is that it
has equally good performance for the grids with arbitrary number of the points. Let us note that
the separate solution of the adjustment equations by the modified SC scheme (8)–(10) is almost
four times faster as compared with unsplit BOXMG algorithm. Thus, although theoretically both
approaches are efficient solvers requiring O(NM) operations for spatial grid with N × M points,

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:453–471
DOI: 10.1002/fld



TIME-SPLITTING SCHEME FOR THE SHALLOW WATER EQUATIONS 465

Figure 4. 500 hPa height field from NCEP analysis for 0000 UTC 30 November 2005.

the practical computational time is quite different. The results of the experiments with unsplit
semi-Lagrangian method using SOR (USL1) and BOXMG (USL2) solvers are presented in the
last two rows of Table I. One can see that MSL1 and MSL2 algorithms are more computationally
efficient for time step � = 60min even compared with the available optimal implementation of the
unsplit version: the forecast differences are at the same level and the CPU time is notably better
for splitting algorithms.

The objective evaluation of the accuracy of the predicted geopotential and wind fields
at 500 hPa pressure surface was performed by computing the RMS differences between 24-h
forecasts and the NCEP analysis. The results for MSL2 (with � = 60min), USL2 (with � = 60min)
and FB (with � = 2 min) schemes are shown in Figures 2 and 3 for height and wind fields, re-
spectively. Overall values of this measure of forecast skill are quite characteristic for the SW
model [34].

To access qualitative synoptic evaluation of the MSL2 scheme performance, we show the
height charts for two 24-h forecasts in the inner evaluation window of the prognostic domain.
Figures 4–11 contain two sequences of the charts: two charts of the analysis fields (at the initial
instant and 24h later), as well the charts of the 24-h forecasts performed by FB and MSL2 schemes.
One can see that the forecast quality is good for both schemes in the first case (Figures 4–7) when
large-scale atmospheric dynamics is determined primarily by advective processes. The standard
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Figure 5. 500 hPa height field from NCEP analysis for 0000 UTC 01 December 2005.

Figure 6. 24-h FB forecast of 500 hPa height field for 0000 UTC 01 December 2005.
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Figure 7. 24-h MSL2 forecast of 500 hPa height field for 0000 UTC 01 December 2005.

Figure 8. 500 hPa height field from NCEP analysis for 0000 UTC 03 December 2005.
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Figure 9. 500 hPa height field from NCEP analysis for 0000 UTC 04 December 2005.

Figure 10. 24-h FB forecast of 500 hPa height field for 0000 UTC 04 December 2005.
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Figure 11. 24-h MSL2 forecast of 500 hPa height field for 0000 UTC 04 December 2005.

statistical evaluations [34] confirm that this forecast is rather successful for both schemes: the
RMS error for FB and MSL2 schemes is 41.1 and 32.6m, and the correlation coefficient between
observed and predicted tendencies is 0.93 and 0.94, respectively.

In the second sequence of the charts, the development of the anticyclonic formation can be
observed in real data (Figures 8 and 9). The forecast chart for the MSL2 scheme (Figure 11)
shows that the scheme failures in capturing this formation, but so does the FB scheme (Figure 10),
because this is characteristic case when the SW approximation does not work well [35, 36]. The
statistical evaluations for this case are: the RMS error for FB and MSL2 schemes is 57.2 and
62.1m, and the correlation coefficient between observed and predicted tendencies is 0.73 and 0.69,
respectively.

Thus, the proposed algorithm has the important properties of efficient schemes: all principal
components of the MSL1 and MSL2 schemes involve only efficient solvers with the number of
arithmetic operations directly proportional to the number of points of spatial grid, these schemes are
stable for great time steps, and they assure required level of accuracy compatible with more simple
and less efficient schemes. Therefore, the proposed schemes are quite efficient for atmospheric
and oceanographic problems where physical considerations require the use of time steps up to one
hour, which is a common situation in limited area and mesoscale modelling.
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